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ABSTRACT

We consider the hydromagnetic induction equation for an

unbouhded incompressible cosmic fluid of finite conductivity

and attempt to find solutions. A partial integration is

found possible in a linear velocity shear or when the magnetic

Reynolds number is large compared to unity. To complete

this integration or to integrate the induction equation when

there is no coupling between the components of the magnetic

field leads to the "substantial diffusion equation"'. The

integration of this equation is reduced to solving a

Fredholm integral equation. Several relations of general

interest for a Lagrangian description of fluid flow are

obtained.
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I. Introduction

An analysis of dimensional relatiohs in conducting

fluids (Elsasser, 1954) shows that Maxwell's equations for a

cosmic fluid can be written

VxE= .

(1)B

is the fluid velocity, and the other symbols have their

usual meanings. Eliminating between these equations, we obtain

the hydromagnetic induction equation,

Tf=7Vxx-v 7XjFXB, (2)

where

V= ( )- (3)

is the "magnetic viscosity." We will assume throughout that

the fluid is unbounded, homogeneous, and incompressible. This

means that v is constant and

v = 0. (4)

We will further assume a stationary flow, i.e.
a \.* 0 V = V J 1 . (5 )

Our purpose in these pages will be to obtain integrals of the

induction equation under these and certain other conditions.

The problem will be treated as kinematical, with V given.

Unless otherwise specified the coordinate system used is

cartesian and defined by the unit base vectors (C1 , E2 , C 3 ) "

Scattered throughout the work are results of general interest

for a Lagrangian description of fluid flow. The most

important of these are gathered in Appendix I.

On taking the divergence of (2) one obtains, since the

divergence of a curl is identically zero,

SB = 0 (6)

If at any time 1 vanishes everywhere in space, than at all times

V'3=0

____________________________________ ____________________________________________________.. ...........__________
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The usual proof of (7) given in textbooks on electrodynamics
does not include the induction current, 6.#xI3. Equation (2)

may now be written in the more familiar form

Vx \ x3+v , (8)

where use has been made of a familiar vector identity.
In seeking physically significant solutions of the

induction equation, the solenoidal character of t must be

kept constantly in mind. While it is true that any solution

of (2) is automatically divergence-free, this is not so for

solutions of (8). In fact taking the divergence of (8)

shows that

SV.EB V *

Although its solutions are not generally divergence-free
;, their divergence, nevertheless, obeys a diffusion equation, i I

so that if initially divergence-free, they remain so. We (9

conclude that (8) is equivalent to (2) provided (7) is trueat t O 0.
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II. The Lagrangian viewpoint

When the fluid has infinite conductivity, so that

v 0, (1-8) may be written

db id- = (J3V ) \I, (1)

where d/at denotes the substantial derivative, a/2rt V ,

of hydrodynamics. In writing (1) we have used the identity

Vx(Ctx) =a(V.41) -(7.c) (V.C)L)-+ (ct.)b (2)

and imposed the condition that V'3 = 0. This has the form of

the Helmholtz vorticity equation of hydrodynamics, which

equation was integrated by Cauchy (Brand, 1947), using the

Lagrangian formulation of hydrodynamics. The integral

was rediscovered by Lundquist (1951 and 1952) and applied to

the hydromagnetic equation (1)

Let r = fro, t) (3)

designate the position of a fluid particle in terms of its

initial position, and the time. The Cauchy-Lundquist

integral of (1) then is

(b ° . V°r, (4)
where Vo stands for the operator with components a/ax , Q
and ° and E refer to the field measured at a particle when

its position is ro and r, respectively.

The importance of a Lagrangian description of the

fluid flow is at once apparent. The particle trajectories

are solutions of the diffurential equation

,= / ,(5)

and the initial position, , enters by way of the constants

of integration. The solution of this equation has been

discussed in a previous report (Skabelund, 1955). We note that

if t is held fixed, 8x i
dxi = dxo

j
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so that ax
dx dx dx 3 -dXdXc dx31 2 3 1 K

in which ax8 iJ - '

is the Jacobian or functional determinant of the transforation

°- r(r°,t). But the volume is conserved in an incompressible

fluid, hence

J= 1. (6)
It may be remarked that if J- is the Jacobian of the inverse

transformation t->ro(rt) then necessarily JJ-= 1, and hence

) 7

A verification of (4) bears out that one must deal

with differential operations cautiously on switching between an

Eulerian or field description and a Lagrangian or particle

formul ation. For example, ifB is expressed in Eulerian

terms, i.e. if I is a field variable, then

dE (-, t)(8means (V.V)1(

whereas if E is expressed in Lagrangian form, where J^ is a

particle trajectory, then Jo and t are the independent

variables, and t't means -. (9)

d /dt as it appears in (1) refers to the substantial

derivative (8); but in verilying (4) one must bear in mind

that 6 is now expressed in Lagrangian form, and (9) applies.

In component notation (4) reads
a x i

Bi = B 1 , (4')

so that
dB 8Ba ax~ Z* ya= ia = Bj o- a-o (10)

which is (1). Note that B is independent of t and that

a/at and a/ax commute.
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I

its solutions are divergence-free, but the remarks previously

made concerning the divergence of solutions of (1-8) do not
hold for solutions of (1). In fact, speaking of b as a

solution of (1), we have

V0 + o, (11)

rather than &T/at = 0, as (1-8) would imply. (11) follows

after taking the divergence of (1) and using (2) as well as

the identity

Vc V IL + (12)

It must be established then that solution (4) is solenoidal.
The necessity of doing this has evidently been overlooked in

previous accounts of the Cauchy-Lundquist integral.

A well-known interpretation of (1) is that lines-of-

force of 6 are "embedded" in the fluid. With this geometrical

picture in mind it seems clear that no new lines are generated

during the course of the fluids motion, so that divRB if

initially zero would remain zero. Another way of lookingat

* the problem is to note that (11) has the form of a first-order

wave equation, so that div propogates like a wave in an

inhomogeneous \#-field (Skabelund, 1955). Thus divJ9

once zero, shoul' remain zero.

Using (4/) the divergence of (4) is

Bi B axi a ax a (13)

9xii ax -i J ax ax9

aB o 0 x=x- + Bj 0x~

axo! ax axo

in which the first term on the right is the initial divergence.

In s emi-vector form,

_ 0 +Br . (13),
ax0

The quantities . at/axo , which will als6 be encountered

in the following section, must now be evaluated. It is tempting
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to say that 82 x 82 x _ a

0 0 0.8x ax - axoxCaM axi

This, however, is not true, for xk is not an independent

variable and a/axk does not commute with 8/ax0 ---a fact to

figure prominently in the next chapter.

To achieve the desired proof, we begin by writing

the identities 0x _ ax axi
- - 8 - (14)

Thus for (3=1 we have

0

ax, ax1  ax 2

+ 1 _- ax2  -axI

ax. axo ax2 ax0  ax3 ax0
1 . 2 1 3 1

8X0 ax1  'x ax2  ax3 ax3
Sv+ f-ax 2 c 150.

ao g o3X/aX gives x

ax1  2 1 V3 1

Solving for ax2 /ax andx axnd combining with the above

result gives
1x ( Vx ) x ( x)J(6

a _ =oV~ ~7~ (17)

ax

Repeating these steps for the other two sets allows us to write

a0 (Vx 0 vx o) (18)

x 0



where (D<,f3, ey is a cyclic permutation on (1,2,3). The last
form on the right follows because the curl of a gradient is

zero and, for any scalar and vector) and 6t,

7x ?C= V x L + Vx I , (19)

identically. Finally, because the divergence of a curl vanishes,

we conclude that

V" _r - o . (20)ax 0

Substitution of this result into (131 reveals that

V" V = 70 V °  o , (21)

the last equality on making the initial field divergence-free.

Thie completes the proof that (4) is an integral of the
induction equation for infinite conductivity. Clearly (20))

is the Lagrangian equivalent of V" ' = 0, the Eulerian
statement of incompressibility.
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III. A Partial Integral of the Induction Equation

a. Physical consideration

In the absence of dissipation we have seen that (2-4)

ia an integral of the induction equation. The form of (2-4)
implies that the field at any time is expressible in terms
of its initial configuration and the deformation of the fluid.

The physical reasons for this analytical form are clear if

we picture the lines-of-force as being distorted when dragged

along with the fluid. If there is dissipation we must

deal with the equation

(1)

which is equivalent to (1-2) or (1-8) provided its solution

is divergence-free.

The preceding suggests that (1) might have an integral

of the form

S= ( .V ° ) r, (2)

where is a function depending somehow on e and t. The

presence of a dissipative term in (1) means the lines-of-force

now slip relative to the fluid; b, then, is no longer

expressible solely in terms of its initial configuration and

the fluid deformation, and b, unlike 0°= B (Y o)must have the

more general form (,t). We expect j to obey a diffusion-

like equation---one which will reduce Eto B(*(0) when v=O..

Such an equation is d= vV2 (3)

A

for when v=O, d b/dt = 0, meaning that 1 is constant as one

moves with a fluid particle along a stream line, and hence

= '( ) That a solution (2 and 3) exists in certain

cases will now be verified.

\
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b. The conditions for a particular integral

Assuming (2) we have

dB dB axi  ,, 8xi, - J + BDS= i B + (4)

but the xi/axj are expressed in Lagrangian terms so that

d axi _a xi (vi

Thus (4) becomes
dB i  dBj ax. v iSr I- B -(6)

ca ~ c7 0 axo

or in vector form

Consider the quantity (1.7)1 in component form we

have, using (2),

avi i = " x v v i

ko -k axk

or
( •7) = ( .Vo(70 )

Since f is a solution of (3) by assumption, (6 ) may be written

which has the form (1) except for the last term.

It remains to examine 2 , subject to (2). One

obtains 2 (9)

K~~ 2at3Fx 2 jxao+ka(3Bi a2Bk ax, jj k25 Y!x

or 2 ~ (V~F 0 ~* 2A +~ B9

ax j x°Sx ax ax ax,

J J
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Finally, then, (2) is an integral of (1) with 13 subject

to (3) if and only if
A C = o0 (l

Since the partials with respect to the x and xko which appear

in A. and Ci do not commute, the conditions (11) will not, in

general, be met. In fact, these conditions will be found to be

very restrictive. This is not surprising, for according'to

(2), (91), and (11), the quantity V2 ,8 which accounts for

the diffusion of B , will evolve in the same way as B itself.

Obviously, not many types of flow patterns will permit this.

It will be shown presently, however, that (11) can be

satisfied under certain conditions. Accepting this fact for

the moment, let us see what has been accomplished. The task

of integrating (1) has been reduced to that of integrating the

auxiliary equation (3). The net effect of our efforts has

been to eliminate the term ( 7) from (1). This is a

considerable simplification, for in (1) the components of
are coupled through the term ( B °  )\. The set (1)

of three simultaneous equations in all three Bi has been

reduced to the three independent equations of (3), in which

the Bi are not coupled. In this respect (2) is a partial

integral of the induction equation. More precisely, this is

so provided 1 thus determined, has zero divergence.
From (2) we have

a 2
aB _ a ax~ a x
ax j Bx 0 x~ (12)

8B i = T13j i  82 i

however, it was established previously that, for an

incompressible flow,
V.r -,

0

and hence

V.1 -- V . 13 . (13)

It can be shown that for the types of fluid flow which

satisfy our criterion (11) A
S0 if v°. l(rO,o-) o,
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and thus A

V.y -0 if (V.)t=o -. (14)

This demonstration must await our discussion of equation (11) of

sec. 1; however, rather than interrupt the argument there, the

proof is given in Appendix IV B.

As to the physical significance of B , note from
(2) that for t = 0

(r°,o) = I(r°,o) ; (15)

thus ( ,0) is the initial value of the field, B. The

equation (3) governing b is a diffusion equation for an

observer moving with the fluid. It may also be written
1

,~~ 7* (.V - 2 E,(3 l)

which has the form of a wave equation with dissipation

(cf. sec. 4 and Tech. Report 17 of the author). It describes

a E-field propagating in an inhomogeneous anisotropic
4-field and at the same time diffusing. Its solution will

be the subject of sec. 4.

c. Satisfying the conditions -Linear velocity shear

Suppose that the streamlines are straight; we may
without loss of generality take them to be directed along

the %-axis. It will further be supposed that \*does not

vary in this direction, i.e., we assume

= V(xx 3) e2 . (16)

The Lagrangian trajectories are given by
dx dx 2  dx

-o, =9 - v, - o, (17)

whose Eswlutions are
0 0 0x =X x2=X + vt, x3 x3  . (18)1 1' 23

We have seen in the preceding section that a
partial integral of the form (2) exists only when the quantities

I __ _ _ _ __ _ _ _ __ _ _ _4
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of (10) vanish. If we require the vanishing of these quantities

without placing any restrictions on the magnetic field, a

necessary and sufficient condition is that

2 0 0. (19)
ax ax

By referring to (18) we see at once that

a2x1  2 x 2  a2 x 3
- = 0. (20)

ax 0 an 82xax2/axxrxjk ik -k

It remains only to consider a 2xk ax 1 and a2 x /ax axo

The first of these can be written

22x2  x a2x2 (21)

ax ax ax ax ax

Now, the ax 0/2x)_ may be found at once from (18). In more

general cases, solving the Lagrangian trajectories for the

inverse functions x, t) is no easy matter- still

the axo/ax j can easily be found in terms of the ax,/2x ,.

once the latter are known---.as they will be from the

trajectories. This procedure will now be discussed because

of its importance to a general Lagrangian formulation,

although as mentioned, it is not essential here.

Return to equations (2-14) of sec. 2; if they are
viewed this time as comprising three sets of algebraic

equations for the nine ax/ax in terms of the ax,/axo, then

we have, on exchanging the roles of randt 0 in (2-17),

ax ( V x>( Vox), (22)
ax

where (o,P,() is again a cyclic permutation on (1,2,3).

Using the above result, or proceding directly from

(18), shows that all the a2x/Saxk are zero save four:.
2 2 20 2

ax 2  t;v ax 2  - av

Exax 1 a(xo)2 ax~axo a(x3  (23)(23)
a2x2  a2x2

2 2ax ax"
ax: .... ax a x a
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The restrictions imposed on the flow by (19) are that

)2 2

1  x 1 x 3  3

which have a solution

v= ax + bx+c . (25)

0 0
The equi-velocity surfaces are planes axI + bx + c = const.,

parallel to the streamlines. Thus v must change linearly in

a direction normal to the flow (the 2-axis). We could just as

well take this &irection to be the 1- or 3- axis so that,

for example,

(ax 3 + b) e2 , (26)

which represents a linear velocity shear in the 3-direction.

Many velocity fields will obey this condition locally, except

at points where I \# has extrema. Recall that has not

been limited in any way.

d. Approximate theor for l magnetic Reynolds numbers.

The possibility of satisfying the conditions (11)

approxmately will now be considered, Suppose the larges of

the 8xi/Sx' has an order of magnituck &; we write

-a. 
(27)

Then, if X is the scale of the fluid motion and if the

motion is reasonably "smooth".,

< and ax 0 (28)
ax ao XCXa -'jk kj.

whence

cJB (29)

: - =- ____,__
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We need next to determine the order of the aBk/SXj; it is

not B/X, for the E-field has not necessarily diffused through

a distance characterized by X. The ordinary diffusion equation,

a/at = 7 2 B, leads to a decay-time X 2 /v, where X is a

length characteristic of the dimensions of the conductor. This

may be regarded as the time necessary for the field to diffuse

through a distance X. One may say that the field diffuses

with a speed v/. The equation (3) is interpreted to mean

that the decay-time of the -field for an observer moving

with the fluid is X 2 /v, and the speed of diffusion relative

to this observer is of the order

V V (30)

m

where Rm is the magnetic Reynolds number (Elsasser, 1954).

During the time a fluid particle has moved a distance comparable

to the scale of the velocity field, X, the B-field has diffused
~through a distance

We see that A ^
aB R Bk B m

<<

ax (32)

a B m~n

whence also, R
AR

IC1
ARmBS (33)

mm

A 2

Di:

A comparison of terms of the right of (S gives

C1

V R
m (34)

AT7r~
_____ .
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Hence, if the flow is reasonably smooth bothAand Cmay be
neglected in comparison with the first term in (9/)
provided

R > 10. (35)

The divergence condition, (14)) is satisfied to the same order
of small quantities, as discussed in Appendix IV B.

I

t l t
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IV. The Substantial Diffusion Equation

a. Preliminaries; nature of the problem

Suppose there is no interaction between the components

ofE ; this means that (b )-I = 0, and the induction

equation (3-1) is reduced to

22

or dE V 2

This is precisely the substantial diffusion equation encountered

in sec. 3. It arises, in three cases: it is the induction

equation when

= 0; (2)

it is approximately the induction equation for large-scale

velocity fields, for when \ varies slowly, that is when

(3)

so that it may be dropped from equation (1-8); it is the

equation for B in the partial integral of the complete

induction equation when neither (2) nor (3) is true.

W'e propose in this section to obtain solutions of

(1). The symbolB will be used throughout, with the

understanding it may be replaced by P when appropriate.
Whenever the solutions obtained are intended to represent

the complete magnetic field and not just 2 , they are

I subject to either (2) or (3), and this must be verified for

particular solutions. The field is-continually spreading

" t both by diffusion and by its being (partially) dragged

with the fluid. It is not difficult, however, to construct
, special~g and b configurations which because of their

geometries satisfy (2) at all times. If ( 7.V) is

merely small, initially, then (3) cannot hold indefinitely;

nevertheless, it should remain true for times of the order of
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the period oT fluid motion, v/ This is because in the

range of Rm where both diffusion and induction are important,

the spreading effects of diffusion and "differential dragging"

tend to oppose one another. (This assertion iq based on the

familiar "entropy arguments' that the general effect of

diffusion is to smooth out inhomogeneities in the field---in

this case inhomogeneities caused by the fluid motion. See

also Inglis (1955) who cites an example to show the extent

to which magnetic field lines can be stretched by "dragging"

before their "slipping" velocity relative to the fluid equals

the fluid velocity. Lundquist (1952) also gives an example.

It has already been remarked that the substantial

diffusion equation may be regarded as a first-order wave

equation with dissipation. A closer examination, however,

reveals that (1) is an equation of the elliptic rather than

hyperbolic type (Sommerfeld, 1949, p. 38 ), and mathematically

it is more akin to a diffusion equation than a wave equation.

It is in this direction, therefore, that we look for a

solution. Physically the equation represents a combination

of propogation and diffusion in an inhomogeneous anisotropic

"Inedium"; consequently, it will not be surprising to find

its solution cumbersome.

b. The substantial diffusion equation as an inhomogeneous

diffusion equation

Trying to solve the equation, even for simple fluid

flows, dispels any notion of there existing bounded solutions

with variables separated. A Fourier analysis and an

application of the WKB approximation for slowly varying V

were also unsuccessful in obtaining physically meaningful

solutions.

We therefore choose to look upon (1) as an inhomogeneous

diffusion equation,

Fr om(hiB1)E (11)

'! From this point of view,'has "sources"
which arise from its interaction with the fluid.
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Using Green's function for the diffusion equation one

can show that

t+d

S-3

0 V (4)

t-

: 0

in which]B is the field within a volume V bounded by a surface

S; G( 'r t r )' is the appropriate Greent s function, V#

and 81 denote P( ,t/) and 6( V,tl) respectively, and

t+ means t +'r, F*O. The details of this operation will be

found in Appendix II.

Assuming that G ' and B , at least, as

the surface integral vanishes as S receeds to infinity, and

in the infinite domain
t

E( r,t) =-v-ldt fd3 ' G(V# 7') 8' (5)

1 3

"* -+Va d (G t •

It follows that

(6)

The last integral is a known function or rather functional,

in terms of ('I,O), which will be designated by

: r ,}:V-l dF IVG( r, t I r', "OJ (r',o) .
VJ{I

i I
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Then (6) has the form of a Volterra-Fredholm equation for
viz. (8)

(V' I)=(rt ftfd3r'K( t r't' (V1

whose kernel is

K(r t A~t ) -=-v l(#) • 'G( .t tlr,t' . (9)

At this point it becomes necessary to state something

more about the Green~s function. The appropriate Greenus

function for the infinite domain can be shown to be the

impulse function

G(R IT-) = vU (-) (4nVT)-n/2exp(-R2/4v ) (10)

R -t-t9

where U is the unit step function

(Morse and Feshbach9 19539 p. 894) Certainly, then our
assumption about the behavior of G at o was justified.

Furthermore9 since G=0 for all t >t, the time integration in

(8) can equally well be extended over all t, so we may write

i"( V I7)l r(t t) t ! d~ K( r t I "t' Y( v#' v7) ',:

which is an inhomogeneous Fredholme quation of the second

kind. The kernel is asymmetric:-

K U( T) #. U? exp( -R 2 /4v77j

Fredholm equations for a function of more than one

U!
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variable are seldom discussed in the textbooks; however, they

can be solved using straightforward generalizations of the

standard methods used on equations for a function of one

variable (Courant and Hilbert, 1953, page 152)o One method

of solution is found in Appendix IV. Finally, let

(,t) = (v. - ) (13)

be the solution so obtained; then substitution into (5) gives

Br~t) r -(14) d

0

It is proved in Appendix IVA that

7.~(r.,t) 0 provided 00( ,0) = 0 . (15)

c. The substantial diffusion equation reduced to an

inhomogeneous Helmholtz equation'

Examination shows that there exist no physically

meaningful solutions of (1) with variables separated,

Bg (V,t) = X,(x.I)Y,(x 2 )Z(x 3 )T(t)

(no summation on greek indices). This, however, does not

preclude the existence of solutions composed of a sum of

terms, each term of which has variables separated. In an
effort, then, to find solutions of (1) less awkward than

; 1(14) we look for solutions of the form

E( A dt) kc(k)T(t;k)F(r;k), (16)
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a superposition of terms with variables separated.

Then

(17)

= dk c(k) [LTv 7f(V )FFjI
which vanishes if

dT * vk 2 T = 0

12 (18)

_vk t(18a) gives T = eVk (19)

as usual.

The plan now is to look upon (18b) as an inhomogeneous

Helmholtz equation. Doing this one may show that

-1 3Fr -k) -v vfd3~ a v

(G -F' ) • (20)

The details of this operation are contained in Appendix III.

G is the Green's function for the Helmholtz equation and may

be taken as

G(rlr';k) = R- exp(ikR) (21)

(Morse and Feshbach, 1953, p. 891). As S recedes to

infinity the surface integral vanishes if F goes at least as: -1

r as r . Assume this is so. In the infinite domain,

then,

r~k) = - I  /G(.;k)(Y'.7')j7 . (22)

This is a particular solution of (18b); to it we may add

any solution,, of the homogenous Helmholtz equation, Al
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[+ k2J 0 (23)

Doing this will guarantee our obtaining a solution F with zero

divergence (a subject discussed in Appendix IXTC). We have now

F (?A k) =F( --k) .vj'rGrT;)~'V)'. (24)

It follows at once that

(\fV')F =, (VV V f d3  '( VG) (V 7')' (25)

which is an inhomogeneous Fredholim equation of the second

kind for (,.)F with the asym~metric kernel -v- \** 7G.
It can be solved using extensions of standard methods. Let

A(; k) = YV F (26)

be the solution so obtained- putting this into (24) gives

of rN k) = F(r;k)-vl d~ r G( ?j k) A (~k) t (27)

Tegeneral (though not necessarily complete) solution

1B( r,t) Jfr(k)F r -k) exp (-vk 2t). (28)

Furthermore,
13r~) J.keck)Fcr;k), (29)

which is a Fredhoim equation of the first kind, with the

kernel F ( r ;k) . Its solution (if one exists), obtained by

standat'd methods, gives the spectrum function e(k) in terms

of the initial field IB( r.O) As to the divergence of ~
note thatIik F xp(vk2)
which vanishes identically only if 0. In Appendix IVC

it is demonstrated that
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The order of the definite integrals involved has been

reduced by one by using this quasi-separation of variables in

(16). It has been done, however, at the expense of assuming

that there exist solutions of (ly) of the form (16) which are

regular at ooand which allow the spectrum function to be determined

through (29). Whether or not this is so must evidently be

decided in individual cases. In obtaining solution (14) its

form was in no wise restricted; hence there can be no doubt
-2

that it vanishes at least as r at infinity, whenever the

initial field is confined to a finite region(because from a

distance, then, the field appears to arise from multipole

sources).

It seems now natural to inquire if (1) could not be

treated as an inhomogeneous wave equation to which the

familiar Kirchhoff method of integration might be applied.

This method is not applicable, it turns out, because of

the intrinsically anisotropic character of the propagation

which (l) describes.

d. The solutions in Lagrangian form

Consider the subject of section 4a. Once the solution

of (11) is known one may proceed directly to finds in

Lagrangian form. Using (2-3), (2-5), and (13) we may write

(31)

where the use of the total derivative means we are thinking

of I as expressed in terms of Lagrangian variables. Then,

since. d= d r. is the change in in the direction of d ,

d3= (dr.V) =@Er(rot),t]dt (32) K
gives the change in E arising from a displacement dr along a

Lagrangian trajectory (and includes the effects of both time- K
and space-changes). As a result I,

At t
=~t ,0) r (o t)dt (33)

Y0 V
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The Lagrangian and Eulerian formulations are merely different

ways of expressing the same thing, and because of this the

conclusion (15) about divE is still valid, and

v?' = o if' 70 . B(r°,o) = o (34)

Although it is usually more convenient to have

solutions expressed in Eulerian terms, it may be desirable to

settle for a Lagrangian form and thus avoid the complicated

multiple integrations involved in (14).

The solution which is the subject of section 4c

may also be expressed in Lagrangian form, at a considerable

saving of labor. From (26) we have

dF =(dr"7)F =A[rfr t)] dt, (35)

and F(r)= F 0 ) + fA( O t)dt . (36)

Besides requiring that V.1=0 as in (30), it is

necessary to have

° " rF(r° ) = 0, (37)

because the term F( eo) is arbitrary as far as the Lagrangian

integration is concerned.

4 e. The pure-diffusion solutions

We close this discussion with an account of one

class of solutions of (1) available at once. This class i's

obtained by setting

2 7(38)

obeys the conventional diffusion equation and in addition,

according to (38b), must not vary in the direction of V.

From (38) we see that V.l likewise obeys a diffusion equation $1
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so that

0 ( " )t=O =O. (29)

Let

Ul(r) = 1<, u2 (r) = k2  (40)

be linearly independent ( VU I x VU 2 e0) and integrals of

d r x Ny= 0 (41)

This means the intersection of the surfaces defined by (40) falls

along the streamlines; and if U3 = K'U 1 x 7 U2, we have

(UI,U 2 U3 ) forming a system of curvilinear coordinates. As a

consequence (38b) is satisfied if

2hi 8 =B(u1U2t) = 8-  Ft (u1l uT . 42

The solution of (38a) is now a question of separability. The

space part of the solution satisfied the vector Helmholtz equation,

which for other than cartesian coordinates should be written

7xVxF= F, F.F =o. (43)

Its separability is essentially limited to six different

coordinate systems (Morse and Feshbach, 1953, p. 1767); viz.

circular, elliptic, and parabolic cylinder coordinates;

spherical and conical coordinates; and, of course,

rectangular coordinates. Thus equation (38) can be solved

simultaneously if the streamlines of V coincide with one set

of coordinate lines for any of these six systems. If they

coincide, say, with +h U3 -lines (the lines on which U I and
are constant) then F= (Uiu 2) may be any divergence-free* solution of the two dimensional Helmholtz equation in UI and

U . The solution of (43) is completely treated elsewhere

(Morse and Feshbach, Vol, II, pp. 1762-1767). The simplest

example that comes to mind is where 2

" = elv and3= e -V t.F(xx
___2,X 3_S-.--- -
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a 2  2with */<L ~ v1 =0+_1, .
2 2 3,

These pure-diffusion and non-wave-like solutions are of

limited physical interest. To require in addition that

(~. V ) = 0 would be altogether too restrictive;- hence

they are of interest not as integrals of the induction

equation. but as possible J3-fields, with3given by (3-2).

I..
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Appendix I Results of General Interest for a Lagrangian

Description of Fluid Flow.

Let ro locate the initial position of a point moving

with the fluid. Its position after a time t is given by the

trajectory = 0( ,ty, where p is a solution of

drV
d(1)

\.*Pbeing the fluid velocity. In the Lagrangian formulation

r and t are the independent variables and 8/at Rnd d/dt
commute with the a/ax;, however, the a/axo and a/axj do not

commute. If operating on a function expressed in Eulerian

terms, then dF/at means aF/at + (/.V)F, the familiar

substantial derivative . but if operating on a function

expressed in Lagrangian terms, dF/dt means simply a F/at.

The following results hold.

-( °  ) Vxx( (7 ) (2)

where ax,
I "T 0 =k-3)ax.

is the Jacobian or functional determinant of the transormation
, r°-->- r( -°,t) , and (o,,< is a cyclic permutation on

(1,2,3). If

: X
1, -l(4)

i~ii

denotes the Jacobian of the inverse transformation

-o ( o , t), then similarly

J-I__81': =( 0 7 ) x (V. o) 7x (XV ) . (5)

When the flow is incompressible

0 (6)
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and j J- l i7)

which means that

a i  Jax. 0 = O . 0. (8)

(8) is the Lagrangian equivalent of the Eulerian statement (6)

expressing incompressibility.

Equation (1) can be used in special c ases to derive

conservation theorems for r. Suppose 4o denotes any linear

differential operator with terms in the a/axi. Then, using

our commutation rules

and if o , 0

we would have d

whence or= const. =Z°r° for any fluid particle. By

way of example, if in particular cases .0 = O, it
follows that

70 , = o TO =3.

For such purposes it may be convenient to express V .V
in any of the equivalent forms

av~ _Y a v a ar
x - x vi Vv, .(Vxo) x (7x') *..

etc..
Appendix II. Integration of the inhomogeneous diffusion equation

The substantial diffusion equation of sec. 4 is to be

written as

and regarded as an inhomogeneous diffusion equation. Let
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(i) be multiplied by a function G which is essentially an

integrating factor and remains to be determined. Then let the

quantities3' 2 G and v'1 aG/at be both added and subtracted on

the left. After rearranging terms and integrating there obtains

t +  
t

fdtfd 3 LG 72 ~,~ GJ *.Jdty r E 2 G B'aJ
0 v0t

-at &t'w = C dt d3 r/G( Nt. t . (2)! o at' it- o

Y V

( rt') and /( t1 ) are represented by 61 and 1 and

t "+ means t . 2, -- 0 the volume V remains as yet arbitrary.

Now, let G( r ,t /,t' ) be the response of the system

at (.-rt) to an instantaneous point source of unit strength

located at (rt'), i.e.,

'G-"l = - (T-tt) (3) ;
VG-v d tt3

and require that

G( rt ,t ) = 0, t<t (4)

(this is a causality statement, required by the unidirectionality

in time implicit in the diffusion equation). It is a consequence

of these two conditions that

GT,t Ir',t' ) = G( T",-t'Ir,-t), (5)

(S'ee e.g. Morse and Feshbach, Vol. I., p. 858) which is a

statement of reciprocity and is rather obvious from physical

considerations. It follows that

7G+ - rG . - (t-t (6)
at
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Returning to (2) and using this result gives

dt'3 ' G .t'= t)(7)

0 v1 V

As to the last integral on the left of (2), reverse the

order of integration and obtain

+  (8)

-v 3 rfa'/a v d fG(vr, tITrt ).b( lt'j
C)V o V

But according to (4)

G( ',t f T,t ) = 0(9)
I +

(which was the reason for integrating to t ); hence,

(8) = v-la 3 r '(G8) / . (10)

Finally, we apply the symmetrical form of Green's theorem to

the first integral in (2)-

2 / 2

! ,]3 t !  3 1 - :1  "

S jdt r'G9~ Gj/4,• o n b (1)

after which (2) becomes{ t+ (12)

=~fd + l- T (d} = !
TS, t) t=0

V V

+Jdtj[Gi~ iiIa d
an an, ds

which is equation (4-4).

(12) has a simple physical interpretation. The
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contribution to B from "'sources" exterior to the region enclosed by

S is expressed by the surface integral. The contribution from

* within V comes from an integration over a continuous distribution

of sources having strengths -(\/.?) and 0(,0); the

latter are instantaneous sources.

The essential steps in this integration may be found in

Morse and Feshbach(1953, pp. 859 ff.) or(,J955, Chap. VII),.

Appendix III. Integration of the Inhomogeneous Helmholtz

Equation.

Equation (4-18b) reads

7 2 F +k F = v7(V"V)F (1)

a Helmholtz equation with wtsources" -v'( V" ) F • Let

G be the response to a unit point source at then

V2 G + G = - J(r- . (2)

G may be used as an integrating factor. Multiply (1) by G

and (2) by F, subtract the two equations and integrate;

one obtains

Jd r F7G- v 2 r (3)

VV

-Jd dJr( '  ) F-)vld3T V)f

On using Green's theorem in its symmetrical form,

(F -G  G s. 4

This is equation (4-20). I -:

-. - <
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Appendix IV. On the Divergence of Solutions of the Substantial

Diffusion Equation.

A. The substantial diffusion equation, repeated from sec. 4 is

= (1)

in which the symbol may represent also, when appropriate.

From (2-2) and (2-12) we see that

(2)

Assume for the moment that

( " V ) Vg = 0 or is negligible, (3)

which must be the case if 3 is an integral of the induction
equation, according to section 4a. On taking the divergence

of (1),

v7 (4)

so that8 and its divergence satisfy the same equation.

Let for a moment the symbol b represent both sand

divb. We then write

2-I7 7 (5)

and discuss both relations simultaneously.

Suppose the *source" function on the right is
initially zero, then momentarily (5) reduces to the homogeneous

diffus ion equation,

al 2

which has solutions of the formi

= t =~0

I ~~~~ ~ ' -________ --- 'Z~-777777
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If now 4 Q. this suggests that the sources remain z;ero. This

must certainly be true for physically meaningful solutions, ,

for the magnetic field- if no magnetic field is present originally,

none can be generated spontaneously by the fluid motion.

To substantiate analytically this physical interpretation
Of (5) one must inquire into the nature of the solutions of the

integral equation to which (5) leads. From (4-14) we have

v-11dGTt-''T 't
i i°J ( ,t)E~ = -v:ld/( tJTt)( ,l '

(6)

+V +v-ld3 r' G r, t ro) L o) ,,

/ /d3in -which df= dt d , G is the appropriate Green's function,

andTF is by (4-11) a solution of

T(r,t) A(r,t) *d t t' JR ,t)1 (7)

where

A( ,t )  d -K o, I) (8 0
( -r t 't) _-V VG(-r, tj-r/ tt),

-rt1 ) =,t 1 )V.( (8
( 79~ 9

is to be regarded as a known function. In what follows

1T - Tl etc. ana_ will denote the combination of

variables (Tt).

One approach to solving (7) is-the method of iterations

(Page, sec. 9.2; Courant-Hilbert, Oh. 3. sec. 6). Choose any
finite continuous vector function as the zero order approximation

for T;' let it be called To. Then the first-order approximation

for jis

] =( .wAfl aed'KkfIf')f '); (9) i

(10)

- d I (-
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where , / / ~I~)(1

K,~ =JdS K(jS Kf/)
If this iteration process is continued indefinitely and wedefine
the iterated kernels

~ j u ~ n~(12)

K ! = K(Ti'
there obtains for the nt -h approximation

~n(.) = A(g) 4ZJd~' i(.yI')A (s1) (13)

It is shown in treatises on integral equation (Whittaker and
Watson, 1920, p. 222) that regardlesm of the choice of a trial
solutic the last term in (13) approaches zero and the
series converges uniformly. Hence, the solution of (7) may be
had, in principle, to any desired degree of accuracy. If we ,
moreover, assume for simplicity that the series of kernels

(14)

also converges uniformly, the expression L13) can be put in a

concise form-

T() A + 9/ IA (15)A•

L is called the reciprocal kernel. K
A glance at (8) shows that if O(,0) =0 then

I-(rt) = 0, and from (6) there follows r (ot) = 0. The
physical requirement thats remain zero if initially zero is
met by our solutions, and this is true of divB as well:

if V.1 ( o,0) = 0 then ro1 (Tt) = 0. (16)
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A

B. Condition (3) is not in general satisfied by solutions

of equation (1);: at least it is not necessary to impose (3) on

the quantityZ appearing in the partial integral (3-2). As a

result the non-homogeneous term in (4) must be augmented by an

additional term from (2), giving

A A A m (17)

Repeating the preceding steps for this equation shows that if

(17. - Othen, nevertheless, 7.( \. 7)1 develops into

a source . , even if = 7 t 0.

Solutions of the substantial diffusion equation

are divergence-free if and only if 7"(\" .)= 0.

For the partial integral under the circumstances of

sections 3d and 3c however, it is not essential that

0., but rather that

7 o, (18)

by virtue of (3-13). Consider the substantial diffusion

equation (1) in the form

A

^Ed 2 r t

Ifl is expressed in ILagrangian terms, Lr(r° t),t]=B(o,),
then (19) may be written

A2 1
-07 (19)

a/at and 70 non commute and

(V . =v70-, • j . (20)

To analyze this equation the mixed derivatives on the right

must be replaced by derivativesw ith respect to the Lagrangian

coordinate . may be expressed as
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Bi k

o" 2o a~x a B a k aB1k i x k  i

ax 8xax ax ax ax (21)

ax~ ax~ a B a2~ a
0 iax: ax ax Ca4 ax ak

W'e consider first the linear velocity shear of section

3c. The Lagrangian trajectories are

x =x I , x 2 = + (x b)t, x x (22)

after (3-18) and (3-26); thus,

2) (23)

which reduces (21) to 2^i
. 7B o ao- =( x . x ia2 4 =(3x 0 ly B (24)

j J xkaxi
For o 2 we have

3^i 3^
C B B i

~~70
a7~k 0 a B - (25)

ax ax x. k vxe axkaxe axkie

2-'\a Bi  C) o
= - (Vx0

The following relations are easily obtained from (22)

0x? 0 (26)
Vx 1 e' VX e2 -a V3 V 3 e3 ;
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0° 0

1 x =2 V-xi.= (27)

V x o a,*2 t 2

0 0
V VA.2  V 3  Ct

The last term in (25) vanishes, leaving

2A 2
V 0 x 0

2 3

22 2 A (28)S t 2 ( . ), 2

and (20) becomes

0 0 (70 "7O
S0 0

Sax 2TOX
2 3

2t2 ao
+ o_ -V-, ( V*13). (29)

;(x2)

* I A
Note that in general a(VOZ ) /at however, when

t = 0 the equation is momentarily

V .J) = , 70 (7 -E)

As before, we see that if 70.u. = 0 initially, there is no

tendency for sources to develop, and we surmise that .70 .

remains thereafter zero. This inference is given added weight

by considering what happens when t is small but not zero.

The last term on the right of (29) can be ignored compared

with the first, and for t--\0,

%C
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2 A A 2
o °.Vt) -V 0 (O.) = 2qt 4 o(. . (30)

x 2 ax3

For the sake of brevity we define the operators

_ a2  2

0 0 a O/
ax2 ax axo
2 3 2 3

and letf designate the combination of variables (7°,t) while
A

D()= o. B
I0i

Equation (3) in this symbolism becomes
I2

7 0 D -v 1 D 2a ta2 D. (31)

Comparing this with (4-1) and (4-14) we see that

,2 3 (32
D(f) =Sd/G(lf/)2ta/ D(' ) v-l T°(aD/)t =0 (32)

Operating on this with with a2 gives an integral equation for

2 D, viz..

= () ta G(f D( ), (33)

where
() = -lrd3o°L(a2G)Djt =C" ('34)

It has a solution of the form

after (IV-7) and (IV-15), N being the kernel reciprocal to

2cta 2 G. As before, if

Dt= 0 = 0 'K(r°OO) = 0 ('36)

then c (?) = 0 by (34), and consequently a2 D = D = 0 by
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(35) and (32).

Interpreting this result is not quite so simple as before.

D is expressed in Lagrangian terms, so the partial time derivative

in (31) is equivalent to a substantial derivative; accordingly,

what we have shown is that if D(]T°,0) = 0 then, subsequently,

D(ITt) = 0 at a particle moving with the fluid. But, since this

must be true for all particles, we conclude that

0.( t) = 0 everywhere in the fluid and at all

times provided only 7 0 * (T C0 ),- 0 (37)

Equation (3-14) follows at once.

As regards the approximate solutions of section 3d,

the last terms of (21) and (25) are no longer zero. Nevertheless,

since ,is slowly varying, the curvature of the trajectories,

of which the second derivatives of the Lagrangian coordinates

in (21) and (25) are a measure, is very small, and the last

terms in these equations are negligible compared with the

first terms and may be dropped, leading once again to (29).

C. It remains to treat the divergence criteria for the

solutions of section 3c. The essential steps are exactly

the same as in A of this appendix. Taking the divergence of

(4-18b) shows that

2 12* (7.F) +. k V.F = -l .V(V.) (38)

provided

7. (Vf'7)V = 0 (39)

V V

Thus we let f represent either F or V'F and J either For 7. F.
Then from (4-24) and (4-25).

S=1 (40)

and
(41)

( "v) = ( Vf -1dr T 7 (V-I
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which. have precisely the same forms as (6) and (7), respectively.
We may state at once that if' 0 then both (Y. )f and/vanish.

Once a particular solution of the homogeneous equation is selected,

r is given by (40), and this fixes the form of 7. it is
that for which the "inhomogeneous" term is 7. . And

if ' =0 then 7'17 = 0. (42)

This leads to equation (4-30).

D. From the physical and mathematical analyses of the
"'inhomogeneous"t differential equations studied- in this appendix,

we hazard a generalization. Consider an equation of the form

7 2A -a A

where A(T,t) is an arbitrary vectory function andy denotes

an operator linear in the space derivatives. If A(-r,o) = 0
we asetta ice. (-,0) = 0, a result corresponding to

(15), there are initially no sources for A , and moreover,

because of this there is no tendency to generate sources.

Whenever the latent "sources,)' -ZA , depend onA in such a

way that they are zero when A is everywhere zero, they are

given no chance to develop, and the quantity A once zero

remains zero thereafter.

, ,4



Lt

-41-

References

Brand, L., 1947. Vector and Tensor Analysis (New York: Wiley),

p. 263.

Courant, R., and Hilbert, D., 1953. Methods of Mathematical

Physics, Vol. I. (New York: Interscience).

Elsasser, W., 1954. Phys. Rev., 95, 1.

Inglis, D., 1955. Rev. Mod. Phys., 27, 212.

Lundquist, S., 1951. Phys. Rev., 83 , 307.

1952. Arkiv Fysik, 5, 297.

Morse, P., and Feshbach, H., 1953. Methods of Theoretical

Physics, Vols, I and II. (New York: McGraw-Hill).

Page, C., 1955. Physical Mathematics. (Princeton: Van Nostrand).,

Skabelund, D., 1955. Technical Report 17 of this series.

University of Utah, Salt Lake City.

Sommerfeld, A., 1949. Partial Differential Equations in Physics.

(New York: Academic Press).

Whittaker, E., and Watson, J., 1920. Modern Analysis, 3 d Ed.

(Cambridge Univ. Press).

rI



-42-

DISTRIBUTION LIST

Addressee No. of Copies

U.S. Navy Hydrogr~ohic Office, Washington 25, D.C. I

Director, Wbods Hole Oceanographic Institution,
Woods Hole, Massachusetts 1

Director, Scripps Institution of Oceanography.
La Jolla, California 1

Director, Lamont Geological Observatory
Torrey Cliff, Palisades, New York 1

Director, U.S. Geological Survey, Department of Interior,
Washington 25, D.C. 1

U.S. Geological Survey, Geophysics Branch,Washington 25, D.C. 1

Director, Institute of Geophysics, University of California
Los Angeles, California 1

Princeton University, Department of Geology,
Princeton, New Jersey 1

Carnegie Institution of Washington, Department of
Terrestrial Magnetism, Washington 25, D.C. 1

Dr. G.P. Wollard, University of Wisconsin, Madison,,
Wis cons in 1

Geophysics Branch, Code 416, Office of Naval Research,
Washington 25, D.C. 2

Director, Naval Research Laboratory, Attention:
Technical Information Officer, Washington 25, D.C. 6

Officer-In-Charge, Office of Naval R'esearch, London Branch
Off., Navy No. 100, Fleet Post Office, New York, New York 2

Office of Naval Research Branch Office,
346 Broadway, New York 13, New York 1

Office of Naval Research Branch Office, Tenth Floor,
The John Crerar Library Building, 86 East Randolph St.
Chicago, Illinois 1

Office of Naval Research Branch Office, 1030 East Green St.
Pasadena 1, California 1

Office of Naval Research Branch Office, 1000 Geary Street,
SanFrancisco, California 1

Office of Technical Services, Department of Commerce,
Washington 25, D.C. 1

Armed Services Technical Information Center, Documents
Service Center, Knott Building, Dayton 2, Ohio 5

Assistant Secretary of Defense for Research and Development,
Attention: Committee on Geophysics and GeogrTphy,
Pentagon Building, Washington 25, D.C. 1

• ¥ p


